Welcome
To
Mechatronics World

Tuesday, 29 May 2018

Biohybrid Robots Built From Living Tissue Start to Take Shape


Biohybrid Robots Built From Living Tissue Start to Take Shape
Biohybrid sea slug, reporting for duty.
Credit: Dr. Andrew Horchler, CC-BY-ND

This article was originally published at The Conversation. The publication contributed the article to Live Science's Expert Voices: Op-Ed & Insights.
Think of a traditional robot and you probably imagine something made from metal and plastic. Such "nuts-and-bolts" robots are made of hard materials. As robots take on more roles beyond the lab, such rigid systems can present safety risks to the people they interact with. For example, if an industrial robot swings into a person, there is the risk of bruises or bone damage.
Researchers are increasingly looking for solutions to make robots softer or more compliant — less like rigid machines, more like animals. With traditional actuators — such as motors — this can mean using air musclesor adding springs in parallel with motors. For example, on a Whegs robot, having a spring between a motor and the wheel leg (Wheg) means that if the robot runs into something (like a person), the spring absorbs some of the energy so the person isn't hurt. The bumper on a Roomba vacuuming robot is another example; it's spring-loaded so the Roomba doesn't damage the things it bumps into.

No comments:

Post a Comment

Featured post

Reading Robot Minds with Virtual Reality

Figuring out what other people are thinking is tough, but figuring out what a robot is thinking can be downright impossible. With no bra...

Popular Posts

Blog Archive